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Abstract

The theory of the resonance radiation force is studied
as it applies to the slowing of a two-level atom using a
swept frequency laser. TIhe theory is developed in detail
for this case. A single partial differential equation called
the Fokker-Planck equation is found to describe the atomic
motion for many cases. This equation is solved numerically
for a one dimensional geometry. Results from this numerical
solution are found to be within 10% of experimental results.
Analysis of this problem in one dimension leads to the
prediction that for fixed amounts of frequency sweeping, a
faster scan rate will yield smaller full width at half max-
imum (Fu4l) spread in the velocity distribution for the atomic
beam, ~his program also predicts that the atoms can be slowed
arbitrarily close to 0 m/sec using this technique. The

program used for this analysis is included.
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LASER COOLING OF NEUTRAL ATOMS

I. Introduction

Background

The theory of interaction of light with neutral atoms
was first developed by Einstein (Ref 1) in 1917. In this paper
Einstein introduced the concept of coefficients that describve
absorbtion, spontaneous and stimulated emmission. He described
how these coefficients allow derivation of the Planck radiation
law and developed the theory of motion of atoms when interact-
ing with light. The momentum transferred to the atoms, and the
fluctuations in this transferred momentum, were calculated
using quantized energy theory and the idea of the canonical
distribution of states in thermal radiation. The first exper-
imental work showing transfer of momentum to an atomic beam
was performed by Frisch (Ref 2). Using conventional light
sources, Frisch deflected an atomic beam. The advent of the
laser, with high intensities and monochromatic nature, greatly
enhanced the experimental worlds ability to slow atoms using
light.

In 1975 Hansch and Schawlow (Ref 3) first proposed that
a standing wave laser could slow atoms using the spontaneous
force. Very slow </ O m/sec atomic beams are useful for

atomic clocks (Ref 4 and 5), doppler free spectroscopy (Ref 6),

and insertion into single atom light traps (Ref 7).
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In 1979 Balykin, Letokhov, and Minogin reported exper-
imentally slowing atoms using a traveling wave constant fre-

quency laser to slow atoms., The reduction in velocity was

small, but the distribution functions full width at half max-
imum (FWHM) was substantially reduced (Ref 8). In 1982 Phillips
and Metcalf reported the first observation of slowing using a
fixed frequency laser. The difference between the two methods
is how the laser stays in resonance with the atomic beam. In
the first case the frequency is changed to stay in resonance,

and in the second a magnetic field is used to change the energy

L
t.
.
-
-

levels so as to stay in resonance with the laser. In two sep-
arate papers (Ref 9 and 10) Phillips and Metcalf, along with
Prodan, reported results of the two different methods of cool-

ing. Unfortunately in both cases the laser apparently quit

interacting with the atomic beam. In both cases the most prob- ;ﬁh
able velocity was 1100 m/sec. In one case the atoms could only RF'

S
be slowed to ~ 4 0 m/sec . In the second case the atoms were P

only slowed to ~ 6 Oomisec . Consultation between the scien-
tists at National Bureau of Standards and Dr. Richard Cook of -
the Air Force Institute of Technology resulted in a theoretical Eﬂ
investigation of this problem using a one dimensional Fokker- I

Planck equation. This thesis is the result of that investigation.

Problem Statement
Given a longitudinal velocity distribution for an atomic ot

beam, and the theory of resonance radiation interacting with

TN

that beam, predict the time history of the velocity distribution
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using a numerical solution to the Fokker-Planck equation. A 0%
P careful investigation of the one dimensional model developed [

by Cook (Ref 11) is to be accomplished. The model will be i

P
r

checked against known experimental results. If the model shows

>

the loss of interaction as found experimentally, then a study ed

of ways to avoid the interaction loss will be undertaken. If E.

)
e

the model does not contain the information, other more complex 24
models will be briefly reviewed to find avenues of further

research. £

Current Knowledge

" The background section gives a historical development of
Eﬁ the important papers in this field. Hence, this section will ffﬁ
be constrained to dealing with the body of knowledge needed 2

(o for the thesis. This consists of three basic areas. First, '
the initial velocity distribution for the atoms are needed.

This information is developed in Ramsey's book (Ref 12). %}

Second, a general theory of the interaction of light with an 'E?

atom is required. A general theory of resonance radiation . l};

pressure of light is developed from quantum electrodynamics

by Cook (Ref 13). Finally, the transformation of the partial
differential equation developed from the theory to a differ-

ence equation is taken from Gerald (Ref 14).

Approach !
This thesis is broken into four main sections. The first
section is the introduction. The following three sections are

the main body of the thesis. A “ibliography and an appendix

. o - - ’- A ry . -t < . . -~ : . .- -----------
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follow the main portion of the work. The following is a brief

‘s
f?

LA NN
L)
-~

description of the main sections in the thesis.

Section II develops a set of coupled differential equat-

{
N Y

LR A O

. ions that describe the interaction of the laser with the atomic
. beam. These equations are developed using Ehrenfests theorem 5;4
- to find the time rate of change of the expectation value of |
the momentum of the atom. It is shown that these coupled diff-
erential equations reduce to a single Fokker-Planck equation

in certain circumstances. The Fokker-Planck equation déscribes ;ﬁ‘

the velocity distribution function of the atomic beam as it

PN Y S

evolves in time. The Fokker-Planck equation is the major start- :ﬁ‘
ing point for this thesis. &7
Section III describes the numerical solution of the 2
FPokker-Planck equation. A difference equation is developed to A
‘A! solve the problem numerically. Stability and convergence cri- ET
teria of this difference equation are studied. A complete anal- if
ysis of a particular cooling method is also studied. The re-
sults derived from the numerical analysis are compared to ex- ;f
perimentally derived results for this particular case.
Section IV draws conclusions and makes recommendations
= for further work based upon this thesis. A review of the major b
theory and results are presented in brief form. An estimate of
the validity of these results is given. Recommendations are

made for further experimental and theoretical work in this area. o

Assumptions and Scope

Several assumptions are implicit throughout this thesis, Eﬁ




The assumptions are detailed below, along with their justi-
fications, so the reader can gain a clear understanding of

the limits of this work. In all cases a minimum number of
assumptions are made. Hopefully this will keep the theoretical
results broad enough so they can be applied to other specific
cases. The theory developed here and elsewhere in the literature
assumes that the atom under consideration has only two energy
levels. At the present time there are no general solutions to
the problem for multi-level atoms. Experimentally, a magnetic
field can-be applied to the atomic beam to allow only two energy
levels to be occupied by the electrons (Ref 15). Thus, the
theoretical results can be compared to experimental results
without correcting for this assumption.

Only a one dimensional model of the interaction is con-
sidered. There are indications that this assumption will cause
some results to be ignored in the model that are present in
experimental work (Ref 9 pg 1151). This assumption is made
since this is the first time that numerical solutions of the
Fokker-Planck equation for this situation have been attempted.
An inclusion of two and three dimensional effects can be added
at a later time to the difference equation. The major result
of this assumption is, the finite extent and Gaussian nature
of the laser beam is ignored. Since the number density in the
atomic beam is very low, approximately 10'® cni? , particle-
particle interactions in the beam can safely be ignored for a

first order answer.
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To allow the Fokker-Planck equation to be used as
the master equation governing the atomic motion, it is
assumed that the external field changes amplitude slowly
in time compared to 7= ﬁ . Here A is the Einstein spon-
taneous emission coefficient. Since the case considered is
a traveling wave monochromatic field interactins with the
atomic beam, the above assumption is justified. If the
external field is a standing wave, and the atoms are moving
with respect to the nodal points, the above ascumption would
be unwarrented.

The scope of this thesis is intentionally limited due
to time constraints. First the theory of resonance radiation
is reviewed in the literature and applied to a gpecific
cooling case. Second this specific case is analyzed in
detail. Third the theoretical results are compared to exper-
imental results, and are reviewed for possible future options

for continuing work in this important area.
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II. Theory of the Resonance Radiation Force

Introduction

This section contains physical explanation of the
interaction of a laser beam in resonance or near resonate con-
ditions with an atomic beam. A qualitative explanation will
be given first to provide a general idea of the physics in-
volved in cooling a beam. A quantitative explanation of the
physics will follow. The specific explanation is a compilation

of several articles by Dr. R.J. Cook (Ref 11 and 13).

General Explanation
When light interacts with an atom it excites the elec-

trons in the outer shell of the atom to a higher state of
energy. In 1917 Einstein (Ref 1) gave the first explanation
of this process. Photons have definite momentum and energy

described by the famous relations,

P= H R and Ezhw

where T\ has magnitude ¥ and points in the direction of prop-
agation of the light wave. A photon striking an atom excites
the electrons when the energy carried by the photon equals

the energy gap between the electronic transitions. When this
happens the photon imparts momentum to the atom. After a time
where 73‘%k » A is the Einstein spontaneous emission coeffi-
cient, the atom will decay back to the ground state. At this

point it can be excited by another photon and receive another

"kick"” in momentum. If the photons are collimated as in a
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laser, the imparted momentum will all be in the same direction.

Einstein showed that spontaneous emission has equal probabil- ﬁﬁ
ity of emitting in the positive or negative direction for a §§§
* 4
one dimensional case (Ref 1 pg 67). The emission pattern of .E‘}
0y

the atom while not isotopic, is symmetric. Thus, the spontan-

"' l

eous emission of the atom imparts no net momentum change to
the atom. A large number of photon-atom collisions will then
cause the beam to be slowed down if the atoms are propagating

in the opposite direction of the laser.

Specific Explanation

Consider an atom with two allowable energy states, E

and E, . This atom is exposed to a traveling wave tuned to

the transition from E, to E5 . This traveling wave has an

associated energy density W. Let P, and P, be the probability {“.
that energy states E, or E, is occupied. Einstein proposed F;&
that in this case the rate of stimulated emission is ‘ o

Rgbimul ated =BWP, . The rate of spontaneous emission is

e v v
’ Y he) AR
I NN e
.
, 0% ”

oy

R sperdumons =AWP, . Here B and A are the Einstein B and A

]
s
A

coefficients for stimulated and spontaneous emission respec- =

»" ’.‘

tively. For an atom in steady state condition, i.e. the field
has been interacting with the atom on'a time scale long com-
pared to <= ﬁ » the rate of exciting processes equal the
rate of deexciting process. !7

Hence,

Rshmuldd 2 R spaﬂﬁqmggs z R abserted tf
WB(PI‘Pn)-‘-—RP:. ..




The atom receives +hk from the absorption and -hk from

S the stimulated emission. So the time rate of change of the

momentum is given by equation 1.

" /'-‘"'.l_ ‘..‘.""-"'
5t Yt o SRR

. "- fl'

F= 48 = §2 = - BW(P-P)rk= PrRL (1)

bl i B ]

This derivation of the force is accurate only for cases

where the momenta transferred has definite value Rk .,

If the field has a variety of component wavelengths, has 1:'5

pointing in different directions or is not a traveling wave,

a more gneral explanation is required to predict the observed -

experimental results.

Two papers by Cook (Ref 11 and 13) provide a more general

theory of the equations of motion of the atomic beam. The first

paper treats the motion of the center of mass of the particle

using Ehrenfests theorem and the optical Bloch equations. It

neglects fluctuations in the force of the photons on the atoms

due to the spontaneous and stimulated emission of the atoms,

The second paper develops a general theory for a two level

atom in a resonate or near resonate field of arbitrary ampli-

tude and phase. The following will be development of the ap- T

& proach used for Ehrenfests theorem and the optical Bloch equa- &éﬁ
tions. QSE

Pollowing Schiff (Ref 15) consider an atom represented %:ﬁ

by a wave function 3 . To find the "equation of motion" of ;g%

this wave packet take the time derivative of the expectation ;Eﬂ

value of the position variable. :3?

_____

ay » et
-------
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Substitute for the time derivatives using Schrodingers wave

equation and perform some algebra to obtain,
Foo= 8 Uy @) - (v 1) x1 ] 4

Integrate over the second term by parts twice remembering that

the wave function vanishes at infinity.

o0 = | Py - ()

Perform the differentiation within the brackets to obtain,

%(x)r'%}/\{* %3} dv= (P2 (2)
™~
Using the relation,

<pr= W P i
In a very similar way one can obtain,

rn‘-§}§§2:= %E%EZ’ = —-<:%$§:> (3)

where V is the potential energy of the system., This is a good

representation in the macroscopic limit where the finite size :ﬁ5§
and internal structure of the particle can be ignored. This

means the size of the wave packet is small compared to

.........................................................................................

...............................
...............................................................
-----------------------------



distance over which V changes significantly. Equation 1 and
2 provide an analogy to the classical equations of motion.

They also agree with the Heisenberg representation which

states,

S_ L T2 Al- N . S
gT»‘ w [ 7 H)=7H © B and

”~ h' o . ﬁ_-bv- -“
28 . LU, H]:-Vah= - 5= Unla-E),

This is because -i-£ is the potential energy for an atom in

-

a field. Here W is the Hamiltonian of the system. For an atom

in the dipole approximation of an exfernal field,

fe 82,8 - & (R

Here X is the electric dipole moment operator and £ is the
electric field evaluated at a point ® . H, is the Hamiltonian
for the internal motion of the atom.

Ehrenfests theorem is equation 4. It is obtained by com-

bining the expectation values of the Heisenberg equations and

setting,
Fa m %:_5_33 = éﬁ? = <v. (F.€)> (4)

Equation 4 is general as long as the dipole approximation
is accepted. To ease calculations, assume that the external

field has the form,

11

P
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inid A &




SR

”

-
~

T
-

E- €E(rD

where 5 is a polarization vector independent of ¥ and t .

This form of £ is substituted into equation 4 to obtain

equation 5.

Fo WO <A€Y WmEED (5)

This uses the assumption that the wave packet is small compared
to the changes in the field. This allows the Va &(Ft)  to

be pulled out of the expectation value. Therefore in the

dipole approximation the motion of the atom is due to the
electric field vector. To find the force acting upon the atom,
and hence its quantum mechanical "equation of motion", consider
a two level atom with energy states E and E . An arbitrary
monochromatic field is applied to the system. The form of this

field is equation 6.

E L,-.‘§) = é Z (F) Q!? 2 L‘_ o)+ \»t] % + Cmek) cw\')u‘)«k (6)
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The Optical Bloch Equations
Several authors (Ref 11 and 16) show that using equation

6 as the applied field in equation 5, yields a coupled set of
i differential equations. These equations explcin the motion of
! an atom in an external field. Equations 8 thru 10 are the
: ' optical Bloch equations. These equations govern the internal
workings of these atoms.
F=m§=

shluvnt VLV O) (7)

l:):(b".e)\)— %-HU (8)

V= -(b1é§U*JLW‘la RL\‘ (9)
be

W= -V - A(Wr1) (10)

Q™ is the
£(r)

- |3
N= 2t

phase of the external field,
amplitude of that field,

Here
is the

is the on resonance Rabi flopping frequency,

D= w-w, 1s the

H: "\\ﬂa‘

I

l(“»'17l‘

is the

The Rabi frequency is a

detuning frequency,
Einstein spontaneous emission coefficient.

measure of the field strength at the

point under consideration. It also represents the frequency a3
which the atom will absorb and undergo stimulated emission in

a strong field. Equations 7 thru 10 show that the force is not

an explicit function of position, velocity, or external field,

*
, *
.
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-
e
—4
.
-
3

.

13 o

R, UL
]
[

........ N P U S S P . . N S e el - .- R el sl e
_______ . e S e
....................

.

-.‘
............. <y .‘-\'_h

.............
..........
WP W WP W W

ST
. e
W e




e EEEPEY . s “
-

but rather is governed by the coupled set of equations

2

shown, The terms involving the Einstein coefficient are

called relaxation terms. They are obtained thru quantum elec-

presents a first principles argument for these relaxation

KR VAL EEES » o

terms.
If the spontaneous terms were not present, the atom

i would oscillate between the upper and lower state at the Rabi
: frequency. The spontaneous emission process, which gives rise
to the relaxation terms, causes a steady state population dis-
tribution. The physical significance of the variables U,V,W
are summarized from Allen and Eberly's book (Ref 11). W is
the single atom population inversion, V is the absorptive com-
ponent of the dipole moment, and U is the dispersive component

of the dipole moment.

The Fokker-Planck Equation
Cook (Ref 13 pg 1087) develops a set of equations similar

in nature to equations 7 thru 10. The equations developed by
Cook are more general in nature and are derived from quantum
electrodynamics. The optical Bloch equations are developed

from the Ehrenfests theorem and only ﬁredict the equation of
motion of the centroid of the atomic wave packet. The optical
Bloch equations are consistent with the more general set of
equations. It is this fact that allows use of the optical Bloch
equations in the development of the theory. The optical Bloch
equations represent a less general but still useful starting

14
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trodynamics and are not derived in this thesis. Louisell (Ref 17) .
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point for most practical applications. Lf’
An easier way of treating the motion of an atomic beam :

interacting with a laser is to use the Fokker-Planck equation.

Using the general set of equations developed by Cook, it can

be shown that the Fokker-Planck equation is accurate to second

order in (Ref 13 pg 1096). An explicit derivation of the

Fokker-Planck equation is given in the Appendix of Cooks paper

(Ref 13 pg 1096). The form of the Fokker-Planck equation is

given in equation 11.

= ““a (11)
=< (FS$) +

ol
44

SN

where § is the velocity distribution function for the atomic beam,
F is the interaction force of the laser with the bean,
m is the mass of the atom and
D is a diffusion coefficient.

Since the derivation of the Fokker-Planck equation is
given explicitly by Cook, it will not be repeated here. The
restrictions imposed by using the equation, and the development
of explicit expressions included in the equation are presented
below.

The major constraint imposed by the use of the Fokker-
Planck equation is the smooth field approximation discussed
by Cook (Ref 13 pg 1096). The smooth field approximation re-
quires that the amplitude and phase of the external field
remain nearly constant during a time equal to the relaxation

time of the atom.This relaxation time is on the order of t:% .
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where A is the Einstein coefficient. If the amplitude and f_".:-:'.
.. .‘;(;
o3 phase of the external field are not constant in space, then 1
the velocity of the atom must be such that it will not move 'j:':_f-
into a region of significantly different amplitude or phase \
in a time 1= , Por instance, in a standing wave of wave- f 2
' ks
length )\, the atom should not move a distance greater than e
NN
T’-‘gduring the time U , L
The interaction force in equation 11 is derived from '-i':";
equations 7 thru 10. In the case of the smooth field approx-
imation since the phése and amplitude vary slowly in time,
the values of U,V,W assume steady state values obtained by ' b
setting I'J.\'m;J = 0 in equations 8 thru 10, After elimination
of W one obtains equations 12 thru 14,
‘-—‘. e L
Us-q\-n-( A*e)/(q(ﬁ§é>a+H\+ DJ.L:’] (13) Lo
V= 'DHJ\./Y.H(A*.S)"+ A", 2./'1,‘] (14) _
) Solving these three equations for F results in,
Fo -LhANTO+h(Bs8)unr] (15) i
: Lidased*+ A+ 2 02 o
. For a plane running wave of the form, \\
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() s & coslhi-wt) N —&;\i—‘-’ : constunl (16)
©=:-Kk-x -_;.e--).-\) ve-=--k So,

F- AAawk (17)
Cu(h-%.9)>s A 00Y])

This is the force associated with the absorption of momenta
from photons discussed in the General Explanation section.,
This force is commonly called the spontaneous emission force
since it is the symmetric emission pattern of spontaneous
emission, that allows the momenta transferred from absorption
to effect the atom.,

For a standing wave of the form,

€D = &) ceslwkt) AL » E0) o< 6 (18)
so that, )
F= - ROV (19)

T4 D>+ R*y 207])

This force is commonly called t£e dipole interaction
force. This force arises from the dipole moment induced by
the external field in the atom interacting with the gradient
of the amplitude of the external field. In general, all one

needs is the form of the external field., This combined with

equation 15 gives the force of interaction between the light




and the atomic beam.

@ The diffusion coefficient in equation 11 arises because
of fluctuations in the interaction force. The diffusion coef-

0 ficient has two components, one due to the spontaneous emission

process, and one due to the induced processes of absorption

, and stimulated emission. The derivation of the form of the g =
E diffusion coefficients is given by Cook (Ref 13 pg 1097). The
) results of this derivation are equations 20 and 21.
_ =
. .
g D) & -%% %%’ 1 ﬁ»ﬂ.‘ %‘;e: %?s K X(%%: %l?’ %:?‘ 3{\.:3(“““:%1) h
" 6 where ;
az WA )G - SR AT (4D 5 A% 4] /2ae
J bes B E:30
] 8= 42 ALe-arlzAr-aad)]/aes 8
: Y= -2k Do (2AM s NN /G2
: G= 4be+RA* 2N 2
. As shown, both the diffusion coefficients are tensors. The :
i, matrix v is a diagonal matrix when the dipole moment is t‘
~ directed perpendicular to the direction of propagation of the "
7 external fleld. For this case and a one dimensional analysis 5
'; §%: ) (Ref 13 pg 1087). If the form of the external field x.
: is Eled) & cas(Kgst) then equations 20 and 21 become equa- -
A ;}: tions 22 and 23. "
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The physical explanation for the spontaneous diffusion %
coefficient is fairly straightforward. The atom spontaneously ‘};
® emits a photon after being excited in a time period 11: 'h . i;'
; This emitted photon imparts momentum to the atom. Since the :f;
» direction the photon is emitted in is random, many such emis-~ X
= t
sions will give rise to a walk phenomenon. Thus, a random walk 1!'
in momentum space occurs. Following Rief (Ref 18 pg 488), one ;ﬁ:
_ can calculate a diffusion coefficient which is within an order ii;
62: of magnitude of that obtained from equation 22, The step sizc :;
is %} , and the rate is B . Hence, o
Des L PR = (WA i
a2
This is within a factor of 5 of that derived from equation 20, ?}
Equation 20 evaluated in a strong field case yields, o
Ds‘ ;LQ (*\\0‘ A
5 Since the emitted radiation pattern is dipole in nature
(Ref 13 pg 1089), the diffusion coefficient due to spontaneous
emission has a definite tensorial nature. That is, it has '
5 different values for different directions in space.

The induced diffusion coefficient can not be so
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conveniently explained. Absorption and stimulated emission géa

iﬁ} processes are not statistically independent. To absord a photon §§§
the atom must be in a ground state. To emit a photon the atom gi?

must be in an excited state. So the probability of whether a Eﬁi

photon emitts or absorbs is dependent on what has happened in %@

the history of the atom. Thus, the statistics of photon absorp- Eﬁ

tion and emission are not Poisonian (Ref 13 pg 1090).

s
P
¢ o2

ST,
L SH S

»
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\. The idea that the induced diffusion coefficient can be

derived from a random walk argument is incorrect in the general

s

case. A step size of KW and a rate N leads to an answer that

disagrees with that found from equation 21 by a factor of %% .
This factor can in principle be as large as desired since it agoh
is linear with the field strength. In general the induced e
diffusion coefficient has not yet been physically explained.

It has been pointed out that a physical explanation can
be provided for certain very restricted cases (Ref 13 pg 1089).
For the case of a standing wave external field that is exactly
on resonance p=Q » a2 physical explanation of the induced
diffusion coefficient is developed from the optical Stern- o
Gerlach effect.

When the external field is a standing wave and the laser
is on resonance with the atomic beam, then there exists two
separate distributions for the atomic beam. These two distri-
butions are a superposition of pure quantum states for the atoms.
These two distributions experience a force F* and F_ . The
states are labled §,, and §_ for the forces they experience.

The nature of the force is most easily explained by traditional

20
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electrqmagnetic theory. When an electric dipole is in an ex-
ternal field it experiences a force ¥=-49(jm.) . This is
the magnitude of the force the atom experiences. The two
distributions experience forces in the opposite direction.
From the .View of stimulated emission and absorption, the force
arises from many coherent emissions., The probability that the
atom is in either distribution is 4 (Ref 13 pg 1084). The

force continues to interact with the beam for a time t‘-% .

Since the probability the atom is in its upper state is % for

the strong field case, the rate at which the atom emitts is

)
Aok bl dodd

AR

A/4, This is because the rate an atom emitts is R = AP, where

P is the probability the atom can emit (%.4=%1).
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Thus, when spontaneous emission returns the atom to its
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original level, the entire process can start over. The atom

can once again feel a force iF. One¢ can see that the beam will
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be split in half each time = % . This represents a diffusion
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in momentum space that can be represented as a random walk

n
process.
For a step size in momentum space = F»t"-"';: and a rate of ' ‘;

2 | one obtains equation 24,

1 = =
D= @Gpr ¢ = 3'{; ‘ (24)

Thus, the diffusion coefficient as calculated from the random

walk approach is

D= _L?LE%\; Using \Fl: 2o (25)
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. Equation 21 gives the induced diffusion coefficient in

general. For a general standing wave of the form equation 26,

the induced coefficient is equation 27. For the case of exact
; resonance &:o , one then obtains a coefficient that is de-
3 rived from the same conditions as before. This coefficient is
equation 28, £ ..
Elrad - 2l calay oo (26) i
k.
:'. - 2 . o a_ ( 2 Sq; k\ 2 '-'.:':-"
D; :%Y LY - 1 AN % Ay AN~ D S MM\ R N (27) o
S T LARNGAan (31 (98¢ + Aroan® | =
S D« AUM §,. A-0 (28) i
> 2 R L
(2; This coefficient agrees exactly with that of equation 25 -
which was developed from the random walk process due to the e
Nt
- Lo
z'.u.J

optical Stern-Gerlach effect. It should be remembered that

for off resonance cases, physical explanations do not yet

Y
’

yield a correct induced diffusion coefficient. Equation 21 &}i

is the general form of the induced diffusion coefficient. EE?

In conclusion, the spontaneous diffusion coefficient gff

(equation 20), can be explained as a random walk process in >

momentum space size 4k and rate A. The induced diffusion o

i coefficient (equation 21), does not have a physical explan- %?S
.3 ation that holds for all cases. For on resonance the Stern- E%
73 Gerlach effect can be used to develop a diffusion coefficient gi

from the random walk point of view. The total diffusion

)
R
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coefficient appearing in the Fokker-Planck equation (equation 11),

is the sum of the spontaneous and induced coefficients.

Daota) = Deade (29)

Discussion

As noted above, the Fokker-Planck equation is a special-
ized case for a general set of coupled partial differential
equations. These equations are presented below in equations

30 thru 33 for completeness.

o

F4EIV5: Ly (vn-Y,us e i (W (30)
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and l(b < (‘hﬁ'u)"w I (w-w) ‘).&\ (1-cas 9'> A
"in the dipole approximation. L

Here @ is the angle between | and B brwew, L_}
v is the mass of the particle and ‘

\ p! is the dipole moment.
Equations 30 thru 33 represent the generalized quasiclassical r"q
RN

¢
0, % 4"
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limit for the equétion of motion for an atom in resonate con- §§{
ditions, :

It is obvious that the Fokker-Planck equation presented
in the preceeding section is easier to solve than equation 30
thru 33. The decision of which equation is to be used is based
upon the exact problem under investigation. For example, a
plane monochromatic running wave obviously fullfills the re-
quirements for the smooth field approximation. Thus, the Fokker-
Planck equation could be used to investigate this problem as
long as the time scale under consideration was long compared
to 1/A. On the other hand, a problem with a standing wave
external field in which the atom moves a significant distance
compared to the distance over which the field changes amplitude,
would require that equations 30 thru 33 be solved. So the
optical Stern-Gerlach effect can not be predicted using the
Fokker-Planck equation,

In conclusion, there exists a set of generalized equa-
tions of motion for a two level atom in an external field =
(Ref 13 pg 1082). These integral equations include all effects i;é—
of field quantization. The quasiclassical 1limit (Ref 13 pg 1083)

"{'-"'-.

of these equations are presented here as equation 30 thru 33.
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The use of Ehrenfests theorem and a form for the applied field,
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yield the optical-Bloch equations (equations 8 thru 10). The

optical Bloch equations are consistant with the generalized

rrlS
et ly ty e e

. " " LI
AR

f
9 )

set of equations but only predict the equation of motion of

e

e

o B (N

. b7
v e
s PviNg

the centroid of the atomic wave packet (Ref 11 pg 227). That

is, they will not predict such results as the optical Stern-

et
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Gerlach effect which is quantum mechanical in nature. For
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the smooth field approximation (Ref 13 pg 1096), equations 30

.\
o~
f“-
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~

)

thru 33 reduce to the Fokker-Planck equation (equation 11)
with force and diffusion coefficients given by equations 15

and 29 respectively. The Fokker-Planck equation is accurate

to second order in ® . For the case of a plane monochromatic

traveling wave interacting with an atomic beam, the Fokker- ;ff}
Planck equation is sufficient to solve the equation of motion :i;
of the atomic beam distribution function. The analysis section fy‘

takes this example and presents the numerical solution of the

Fokker-Planck equation for this case.
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III. Application of the Theory to Cooling an Atomic Beam

Introduction

This section deals with the application of the theory
developed in section II, to the problem of using a laser in
resonance with the atomic beam to decrease its speed. Following
this introduction, the Fokker-Planck equation will be converted
from a partial differential equation into a difference equation,
The numerical solution of this difference equation is studied
in view of the constraints imposed upon the step sizes of
time and velocity, due to convergence and stability of the
numerical solution. A description of the particular case studied
and its initial conditions are then given. The difference equa-

tion is solved numerically and compared to experimental results.

The Fokker-Planck Equation as a Difference Equation

As shown in section II, the Fokker-Planck equation serves
as a method of calculating the time history of the atomic beam
distribution function in cases where the smooth field approx-
imation applies. One method of numerically solving this equation
is to convert it to a difference equation and solve using the
method of finite differences.

If the differentials in the Fokker-Planck equation are
replaced by difference quotients, the resulting equation is
krnown as a difference equation. Deriving these difference
quotients is straightforward. If there exists a function $
that has continuous fourth derivatives, then it is expandable

in a Taylor series expansion as in equations 34 and 35.
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Do SO SO VS WAl L Sl SR B n (38)

SN < S0m)- €0k + S - W SR W xoni Bk (35)
a aN

l Here W is the step size. To find difference quotients for §(x.)
or §'(Xa) , one solves equations 3% and 35 for the derivative

wanted. For instance, if equation 35 is added to 34 and

l subtracted from the resulting sum, one obtains equation 36,
S ) + S0 W) - 350k = VW *ié\:‘ EREAY S“’(Z,}] (36)
"

Here $5(x.*W) means the function evaluated at the value x.1\ ,

where W is an arbitrary step size. This is rewritten in equa-

_. L! tion 37 as,

§" (4 = Stat®) = 350x) + See™) | Q)

OU\‘) means that the error approaches proportionally to W

as W9 O . This is known as a central difference formula for

the second derivative (Ref 14 pg 219), since the derivative
at point X, depends on values of the function at velocity

points before and after it. A forward difference formula for

< R

» % X St

(] . . . [
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] Py " 0

the first derivative is derived from equation 34 by solving o
directly for $(x) as in equation 38, .-\-.Z._s'j

|'!:;"

8 (x2) = SOeb) -8Gead () (38)
12

27




(R 4 IR

AW

feu

As shown, this has errors proportional to h . Finally, a RN

central difference formula for the first derivative is given

in 39.

8 (x)= Sl - SCeah) | (1) (39)
IR

Corresponding to equations 37 thru 39, are similar equations
with the variable t replacing X . Obviously, the choice of
variable is immaterial.

To allow use in a partial differential equation, the
difference equations must be modified. To solve the Fokker-
Planck equation in one dimension, assume arbitrary step sizes
for time and position. Thus, 5(xh) becomes ${xa+ LY S} ,
and $(ksW) becomes §(t+at) . Partial derivatives with

respect to time and space can then be written as equation 40

thru 42,

D _ Sleeab)d- Slx) , forward difference. (40)
¥t bt

%3\.’.; 5’(1:4»\!3*’5("'“"3 » central difference. (41)

2 av

Pl = §lvy o) -2 54v) 2 §(v-nv) , central difference. (42)

w* av?

o/

Again the choice of variable is of no substantial consequence.

The only assumption is that the function has continuous fourth

derivatives for the variable in question.
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Many difference equations can be written for one partfial ;fé
differential equation by using different combinations of for-
' - ward, central, and even backwards difference equations for
the partials. The Fokker-Planck equation must be solved for

successive increments in time and velocity. Thus, a forward

A G Y

or central difference must be used., To ease calculations and
file space, a forward difference will be used for the partial
with respect to time. The second derivative must be written
‘ as a central difference if one wishes to avoid using a first
derivative to calculate the second derivative. The choice of
forward or central difference for the first partial with re-
g spect to velocity is at this time arbitrary and will be left
for later.
A time and velocity plane is constructed to solve the

Fokker-Planck equation. The axes are scaled from 0 to as large

e« v, "
R A
v e,

as desired in increments of o¢ and av . The partial de-

rivatives presented in equations 40 thru 42 are written again

¢ o ¥
s
-'u LWt

in equations 43 to 45,

whooogvogl

,forward difference. (43)

a at
hgz 8o, - 82, ,central difference. (44)
Iv 3 av
d ag) ’ Y o '
s d 5:.2 {,\- a8 ﬁgi-. ,central difference. (45) A
S ~ --“_'.
Av > o

2% %r T
l' .l. .r' ," 4(' A

<
r.

The superscripts denote the time position at which the function ' :?p

LARAS A/
al
ad

29




i
»
-
»
-

RELAN SN

S el

is to be evaluated. The subscipts refer to the velocity position
at which the function is to be evaluated. All the equations
necessary to write the Fokker-Planck as a difference equation
are now present. Two difference equations for the Fokker-Planck
equation are presented in equations 46 and 47. In both equa-
tions, the time partial is a forward difference and the second
partial with respect to velocity, is a central difference. The
only difference between the two is how the first partial with
respect to velocity is represented. In both equations the

force and diffusion coefficients have sub and super scripts

since in general they depend on time and velocity.

5“‘_5 [fmfi’.. - Ff.’&:i] *Y.D\MS\.N~JD‘.§ ;.*-.5{3] (46)

™ b m‘-bvﬁ.

&" -S~ . [F“.Sm- LY } . (oéﬂ&;‘.\- 18¢ ,bi.SE.L] (47)
Aw oV R

The Fokker-Planck equation is a parabolic differential
equation (Ref 19). Thus, the equation is solvable using the
explicit method of finite differences (Ref 14 pg 220). This
means that when the partials are replaced by the difference
quotients, the value of the function at the ith velocity can
be solved explicitly for the j + 1th time. This is evident
from 46 and 47. All values in the equation are known except
for S?‘ .

The initial atomic distribution function is given by
Ramsey (Ref 12). This represents the atomic velocity distri-

bution funtion as it comes out of the atomic oven. This

30
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distribution function will be changed as time proceeds as

prescribed by equations 46 and 47. The general forms for F?

and Di are given by equations 15 and 29. The explicit values

used for the force and diffusion coefficient depend upon the :L

exact problem to be solved. The next subsection discusses the

particular case to be examined and derives explicit equations

for ¥} and D) .

Slowing an Atomic Beam Using A Scanning Freguency laser E :

Consider a monochromatic plane traveling wave counter-

propagated against a collimated atomic beam. The form of the

wave is given in 48,

E(x)= & <o k-% - wt) (48)

The force of interaction between the field and the beam is

given in 49.

F- A HA - - AL (49
(9 (%00 Ava] LBy kYA 2]

The total diffusion coefficient was derived in equations 22

and 23. It is given here as equation 50.

Drz _hPANK N ) 5l {U\‘H
sylarke) AT Aly(askY s AR ]S (50)

Jra (oo nreanz] A fa(Baw) 'y A3

This problem is treated in one dimension since the wave is

assumed to be of infinite extent and constant strength J\ .
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The wave vector k=- [klk , since the laser is counter-
propagated against the bean,

In both equations there is a term at+kv , This is the
effective detuning since azw-w, and -Wv 1is the doppler
shift term. The laser starts at a frequency tuned to resonance
with the initial velocity atoms Vg . The effective detuning

is zero at the peak of the force. As the laser frequency is

swept, different velocities come into resonance with the laser.
That is, different velocities make the effective detuning equal
to zero. The force is maximized when the effective detuning is

zero.

b‘f k\rP: 0

p represents the velocity at peak force. (51)

At time t=O , the velocity wv:vr, ,» so that

Az - ko | (52) i

The force then assumes the form

w— - -~ . -
F= AN kkk 4 (53)
A%y 200 i

If the laser frequency changes, then A changes in a ’
manner yet to be determined. As 0O changes, different velocities :j:"_',::-
JORR

will satisfy equation 51. Thus, the force will be resonant S
(i.e. a maximum), for different velocities of the atomic velocity ;:-.".5




distribution function as the frequency of the laser is changed.
The force is opposite the beam so the atoms are slowed. If the
laser frequency is changed so that the atoms in the beam slow

just enough to remain at the peak of the force, then

—

Femv = - RH{N;\;\} (54)
*

Integrating 54 yields a velocity at which the force is maximized

at

Vp = Ve- H\n.“t'\kt (55)
™ (A%

Here g is a constant of integration and equals the initial
velocity that is on resonance. Equation 51 gives another relation
for the velocity at the peak of the force. Combining these two
yields

A‘-' - kv - - k v - M 6
' Lv. ~{ At (56)
So if the atoms stay in resonance with the force, then the

detuning changes with the scanning frequency of the laser as

A= - kv& '\Rt N \»\\l& ?\3 F\J‘.\“'\ k\ (57)
m{AY2ANN)

This is the detuning rate at which the atoms slow just enough

to stay in resonance with the laser., If the rate is any faster

33
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the atoms will not be slowed enough to stay with the peak
force. The detuning rate should be less than the maximum cal-

culated in 57. This indicates the inequality

R &N_‘?(_%f%) » R has units of se«¢®  in MKS. (58)
The physics of the problem are now established. A laser
interacting with an atomic beam which is characterized by its
distribution function § , exerts a force given by 49. The
laser initially is in resonance with an initial velocity -, .
. The laser frequency is swept at a rate given by 58. This causes
atoms to slow down and the velocity distribution function is
changed. A diffusion coefficient given by equation 50, causes
heating and moves atoms out of the peak of the force. As the
laser frequency decreases, substantial numbers of atoms are
slowed to lower velocities. The final velocity the atoms are
slowed to is proportional to the doppler shift av: 'ﬁ‘—:’ .
The force in equation 49 is Lorentzian in w . Thus, it has
a characteristic full width at half maximum spread in frequency
of (R’Wlﬂ." % . This corresponds to natural and power broad-
ening of the force due to the atomic response (Ref 11 pg 226).
For typical numbers, this is much narrower than the FWHM of
the initial distribution function. So as the laser is swept
in frequency, the distribution function becomes narrower and

moves to a slower velocity.




: Stability and Convergence Analysis E;:_
As mentioned before, the step sizes for at and asv ;:‘E
~ are arbitrary within limits set by stability and convergence »

3 criteria. The convergence criteria are derived using the prin- E:‘E

3 cipal that the numerical solution approaches the real solution EEE:

| as av and &t tend toward 0. Stability is defined as the |

damping of error terms as they propagate through the calcul- -
ations in time. The two difference equations introduced in “\1
equations 46 and 47 are investigated for convergence criteria f:i
first, then for stability. The two equations are then compared -:1
and the one that has the least stringent requirements on \‘

. and at,e\r is chosen to solve the Fokker-Planck equation. L;j

The equations needed for the convergence and stability ‘

‘ analysis are equations 59 thru 61. Equation 59 is the Fokker- o

_ @_ Planck equation. Equation 60 is the Fokker-Planck equation [g

rewritten as a difference equation, with a forward difference \-

I used on the first partials, and a central difference used on

the second partial with respect to velocity, henceforth called

i_' method 1. Equation 61 is a difference equation, with the ve-

locity partials written as central differences, and the partial

] with respect to time, written as a forward difference, hence- .

forth called method 2.
~ "“ :-‘

R NP RE N (T (59) =
SRR PR Sy S HEEL L I i
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As before, the superscripts refer to time increments and the e
subscripts refer to velocity increments. From now on, the h;;:
convention will be used that all superscripts will be dropped E:‘
unless they do not equal j. Therefore, all difference equations N
will have only one term with superscripts. The convergence N
analysis for methods 1 and 2 follow.

The exact solution to the differential equation is 'U;

and the numerical solution is -S:, . The error involved with
substituting the numerical for the real solution is {'; .
Thus,

Q_}. = '\)}s = &

20

» and §)=N:~Q:‘ .

To analyze the convergence constraint for method 1, substitute .

the above relation into 60 and collect terms to obtain

3 . . ¢ ; _., !
. . 3 i X i ;
e)ﬁl 1LY N [r Davi @y, + DA, g,}u_\ - £AV £ Qu‘..] * ec: [" ":P” ! R':bv]

- »n
] n m 2 ™ e

- D'\ A \ \ ‘ A ‘\

o r (Bala Balle)), covel ) ) (62) E

Y ) D‘ . .‘.

-ual it e ] . i
Here ¢« f’%; . A Taylor series expansion of WX, UJ, A" ‘

yields

f i e, t 8
N i !. “'{'f_'n‘_ e
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. Substitute the above relations into 62 and cancel the appro-

priate terms to obtain 63.

N D" ) QDé.. ,;)_, s \
ef's [r(Pnti it s ol )

L 4 ey
SEMEARAM RISy

- S ol , (63)
S vy
+e:\U~L";gi+£%‘lF:]+ht M
.1 (02 : . > -
Here M. -g%(v..:ﬂ\ 4[ avr (—&1:7 {‘U; + %%-bv *ﬂ(&,ﬁ)‘i"% i*‘
N 5 " Ty a \ . ) :::::::;
‘?ﬁ" T RVER 55_‘7‘ (805 %%L(“B\ * aem vy UL %%_ av e
. . 3 . NG
. 4 Lt“_ X L % - -\l; -__.DD“ + F: ) g
ts 5o (& A ( m e [ ]
with all s expressed as r= d% ;q
The magnitude of the maximum error in time t%-»%3* .M:J
is E""- E-" . To calculate this error, take the maximum D

e

values in equation 63 and the magnitude of M .

)
Ll
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where D). and F. are the maximum values of D;‘, and F) .

This leads directly to 65.

R e R ) PESLUES =
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If the coefficients of E® and |M| are positive, then

the following inequality holds.

R i R N LR AR L)

and thus, E:“\i E3s ot M) . Applying this result at
different times leads to 67.

Eie Ehaatiml & EV'y aatiml . ¢ ES+ln) stim) (g9

The last term E°+(31) stIM) = (j+1) oA\M) since E°:0
at time t'=0 .

Equation 67 shows the difference equation will converge
to the real solution after j iterations. This will happen
when initial errors are zero and when a% is arbitrarily small
with |M\ finite. The initial condition in this problem is the
velocity distribution function, which is theoretically and
experimentally well known. So the initial errors can be made
zero. The term can go to 0 as at goes to 0 as long as l“’\\
is finite. IM\ is given in 63 and by inspection it is finite
as long as ov and m $# O .,

As pointed out above, the coefficients of E' and |M\
must be positive for 66 and 67 to hold true. So the convergence
criteria are found from requiring that the coefficients be

positive. Therefore,
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at> O
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Now Duax = m[‘j‘- k* L)J\. R{ A +)ﬂ H\E] &‘(R‘)ﬂ)

Ay AN
Obviously Dmax can be made positive since the Rabi frequency
can be made larger than the Einstein A coefficient. Equally
obvious, the term Fmax is always negative for this case. Thus,

the first and third equations can provide no constraints upon

the difference equation. The second equation is the only equation
that can provide such a constraint. To find this constraint,
solve the inequality for r. Replace r with its wvalue f=§$= .

Upon doing this one obtains

{mav)’

bt ¢ -
‘ [20m s mov|Fal]

These are the convergence criteria for method 1.

The convergence criteria for me%hod 2 are found in much
the same way. Let the real solution corresponding to the differ-
ential equation be Wdi . The solution to the difference equa-
tion is Sl . The error involved is ;l . This leads again

“ . s
to %b: .\)i-{,‘ .




Substitute this into 61 and obtain 69.

P pot 2. D ooy Fm. r OO .3
[ = e = U +fed (1- "\ v e, ( )
)
ﬁt e:-.(——“’:fm qa NE [“«--(-‘ +2:0n) 4
r : 3
ML k) oLt k)]
C Expand the terms ‘\A"“ ﬂQkﬂ » ' . as Taylor series as
: before. Collect all terms in \) and express them as M. Equation
! 69 then becomes 70.
' u\ - e Dn o4 v [ rov Fa, ]).A )
[Qn(\ = \*.an(—i—;——ir—"\ﬁf—
+ e.{..(-“,-‘:’\-F—“E'-*r_g‘é-_L\] » at ™M (70)

™ v

o (k) (e B ) (5 2]

Where M = [ L(\rn"‘\\ 5 20k ('\A‘ *r BV + B0 %."&(E '0)

The maximum magnitude of the error for the calculation at time

{f is [’ , so that once again,

E';u ¢ E'x' bkh'\\ & {3"., );{\M\t ce & E°1 bi\ Ml = at \M\

This is true if all coefficients of the error term are positive.

This gives the constraint upon r such, that the solution from

the difference solution converge to tne solutions of the differ-

ential equation.

IR

(\-l'b"‘\>0 or &t ¢ (vmw‘Sa (71) LJ‘
T2 Dwm R
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Equations 68 and 71 represent the constraints upon methods 1 izf
S and 2 respectively for the solutions of the difference equations QE‘
I - to converge to the solutions of the differential equation. %i'
The stability constraints are now obtained. Expand the §§
velocity cistribution function as a fourier lattice series S?
I (Ref 20 pg 3). One then obtains 72,

St Z R oxpf (603 2RO L wnere W coldn or)

and g(h). vk . R
The subscripts denoting velocity have been changed to n since

a complex term has been introduced. Equation 72 shows that

the distribution function at velocity n is a series of fourier iﬁﬁ

components. Each component in this expansion is a solution to :ﬁi

60 and 61. If the coefficients are constant then each component iﬁ

! @;’ of this series can be seen to be a eigenfuntion of equations L
:% 60 and 61, Substitute the component "Un(k) into 60 and obtain ig
by .
. Ve WA 20 (104 t8) | 2 D veovf ;uxmfa{"’] (73) 2
X
g Obviously, the term in brackets is the eigenvalue. So each %f:
E component of the expansion conforms to equation 74. o
‘ R = Zul (74) X
5
Equation 60 and 61 show that each value of the velocity ‘ﬁi

E’ distribution function for time tgta" is calculated using '53
3 41 :
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existing values of the distribution function at different
velocities. If an error is intrerduced as calculations proceed,
because of round off errors or other problems, then it affects
subsequent calculations. The error is

e.:‘{“}\"“.‘n , where ) is the value that is incor- (75)
rect at time j and velocity n. This error term will give
solutions to equation 60 of the same form as 74 except that
P will be ®Y' . Starting with 74 and ' instead of
A at time t° , e'.)e° .

For the next time iteration one obtains

=z Ne'z N'e® (76)

Here the superscripts on the e's are time increments and the
superscripts on the )\ 's are exponents. For each time iteration,
the error is multiplied by the .eigenvalue M.

Stability for numerical calculations means that as succes-
sive calculations are made, the errors tend to damp out. Looking

at 76, one sees that after j iterations
ed:Ne’ ‘ (77)
If due to the initial error e° » one requires that after j

iterations &*¢ X‘g" » then obviously l).\(\ . If \)\\ > |

then the errors grow instead of decrease. To find the requirement

42
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for stability then, one requires that . RN
Wt
. L
SRS The constraint upon method 1 is then Qﬁ‘
) k-
; o
. L s 8 e
y ‘ lﬁ).L"?E‘-(cosQ-l)-l.&%ﬁ“(l—cos@)&sﬁ—:—&tsne ¢ | (78) .:::_’:;
. L v
! This simply states that the eigenvalue found in 73 has a .E{.
magnitude less than 1. Euler's relations have been used when iﬁ?r
writing 78 to turn the exponents into sin's and cos's. i;
. Calculating the indicated magnitude is tedious but %ﬁf
straightforward. The real and imaginary parts of the equation ;ﬁ
< are squared and added together. The square root of the resulting ;f
3 quadratic is the magnitude. After this, one solves for r and o
ﬁj obtains 79. i;i
: po
i G YDm . Ravfm -
(! < ™2 m Y ~ (79) ]
[ ( '{D; - N :!D F o b\!}( ‘-gqu\) *E’.‘:_Q.)r
- ™ [, ™ >
- This calculation is made for one particular “\l. . L
! Since the value of the velocity distribution is a sum of a Qﬁ
.:\.;

series of the “\Ja s , each “J~ must remain stable. The errors

must not be growing in any of the components of the series,

ot
|

or these errors will swamp out all the other components, For
every value of © , equation 79 must be true or the difference

equation will be unstable. Thus, every value of © that gives

- a unique value to 79 must be satisfied. Following Kittel 3:?
E (Ref 20 pg 3), the allowed values of © are given by the Eﬁi
i periodic boundary condition that éiﬂ
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NC\QN = \Ua (80)

So <xp éle(anS%z exp é l%n%
= wPFiONFerpdiny Tevp 3i0nY

This will only be true if <yp3@N3}:=l or ©Nz: W .

So the values of ® that are allowed are

MO oF -niavherm (81)

Since 79 must be satisfied for all values of © , only
the most stringent requirement on the inequality is important.
Since r-< -gf;.. in 79, it can be seen that what this equation
really means is that at must be smaller than a definite
number for every value of av ., The most stringent requirement
corresponts to the smallest st that is calculable. To min-
imize the st , the (l-cos © ) term must be maximized. The
maximum value for this term is 2, Place this in 79 to obtain

the constraint on oYX for method 1.

av? [ﬂ.@. 20w Fn]

~m

{ 3 (R - 4 Do 4,1_@\,] (82)

~m

at

(ma\h
which becomes at ‘[;om., sumlfal) upon cancellation of

appropriate terms. The terms cancel since Fmax =- \Fmax\ .




Inspection of 68 and 82 show the criteria for convergence
and stability are the same for method 1.

The stability criteria for method 2 are found in a
similar manner. Insert equation 72 into 61 to obtain

\w‘ \Bh Do f, -9 -lan . )
< [! —L—— +£§_\.L—'2-( T AN ) 5‘)1"2:. (‘gt*inQ)] (83)

Using Euler's relation

&hl \.Qo{ \ - .-Bm N ng\se -’\,rn\rFma'mé] , where ©«advuk (84)
™

The term in brackets is the eigenvalue. As before its magnitude

must be less than 1 for stability. So the constraint upon

method 2 is

‘_\ % 3;"—??(:056-0 4 -1';\_25 ( |- <05 93 3 "bif;sin‘91{< 1 (85)

at

Solving this inequality for r and remembering that r = .,y

one obtains 86. This is the constraint upon the time increment
vs the velocity increment for method 2 due to stability require-

ments.

4 DbV
St -———&_—-—

(‘m »M) qo.. w,e] - (86)

- Once again, all terms of the expansion must obey the require-

ment that they not have errors growing as calculations proceed.
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Thus, all values of cos © must be examined and the most
stringent satisfied in 86. The maximum value for cos 8 is

+ 1, and now

at ¢ A‘Fj"a for cos © =1, or (87)

at ¢ (nasv-)\

S D for cos @ =-1.

These criteria agree with Roach (Ref 21 pg 45).

The above stability analysis is valid only for local
conditions. An eigenvalue must be constant for a given problemn.
Both the eigenvalues 73 and 84 contain the terms Fmax and Dmax.
In the original equation these terms devend on velocity and
time. The constant values of.the peak force and diffusion
coefficient were used so that the calculations could be per-
formed. Thus, the stability analysis is really only valid
for regions where the force and diffusion coefficients remain
constant with respect to their current values. This require-
ment is met if the step sizes for velocity and time are small
enough to limit the change in force and diffusion. So overall
constraints on the step sizes are given by the requirement
that the force and diffusion coefficient can not change dras-
tically over the step size. This leads to the term local
stability. If the local stability conditions are not met,
then certainly overall stability can not be insured. Thus,

local stability is a necessary, but not sufficient condition

L6




PR 02 0 a 208 L

for overall stability.
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o The two methods are now compared to determine which
has the least stringent requirement on the time vs velocity

step size. An initial step size will be used, that insures

the force and diffusion coefficients do not change significantly

over the step size. The most stringent constraint on each

method will be compared to see which offers the largest time

vs velocity step size. Comparing the most stringent constraints

will insure that all stability and convergence criteria are
met. Picking the method that has the least stringent of these

constraints promises faster run times.

Equation 88 shows the requirement for stability and con-

vergence for method 1. Equations 89 and 90 give the require-

ment for convergence and stability respectively for method 2.

st ¢ (™ ov) *

(A Dm 4+ mvrifa)) (88)
(o)
S —_—
w I om (89)
at ¢ :}PT; , o sty (zubvsx (90)

From before we know that Dm is

(an*Ag-A™ 2003, H\)}+ Alhwa)  (91)

m = ht RIS
A2y (‘ﬂ' k St ( A

and Pm is

47

2" e

[
¢

Y '

.
o'
.

f
BT

4, 4

?'.l 'l .I .
AN A
adiar:

, ." *
. ¢

1
3
O
;\_:3
A

1
-




Fm =

(A* A7)

For any realistic case, J1 is 5-10 times larger than A.
After discarding insignificant terms, an order of magnitude

calculation for on resonance will yield

pm = R VR (4AYA) = WA and (93)
YRV A
Fm = - AN*kk . - Akk (9%)

ant 2

For comparison purposes of the two methods._ values are needed

for Dm and Fm. Using the following values, one obtains

Dm

2.78x 1077 kq*- m™
e d

Fm= - 52710 nt

-
‘,‘Q m"

where k

K
A

~

1.054 516 *Y T-sec

\ yiod¥ SQ.C‘
Y .07 Wq

Methods 1 and 2 can now be directly cempared to see which
has the least stringent requirement on the time increment vs
the velocity increment. For method 2, the constant value in
90 is

- -
ak ¢ 3(-?-0-\\-‘ = A0 T sec Method 2 (95)

L8
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For method 1 the calculation is more tedious, A table of values
calculated from 88, of awv vs st is given in Table I. This
shows that method 1 has a less stringent requirement upon the
time increment. So method 1 will be used as the difference
equation to solve the Fokker-Planck equation for new values

of the velocity distribution function.

Analysis of Scanning Frequency lLaser Cooling

The theory of using a scanning frequency laser to slow
the speed of an atomic beam was developed earlier. A specific
case is now analyzed using this theory. Prodan and Phillips
(Ref 10 pg 137) report the use of a scanning frequency laser
tuned to 589 nm (Ref22 pg 3826) to slow an atomic beam. The
laser is tuned so as to initially interact with atoms at a
velocity of 1100 m/sec. The laser is swept at a rate of 6.4E11
Hz per sec. The laser intensity is 5100 watts/m2 (Ref 23).
Experimental results were reported for scans of 480 and 750
MHz. This information will be used to generate a case similar
to this so comparisons can be made between theoretical and
experimental values.

Several important constants are needed. The Rabi

flopping frequency is given in 96,
a )
JL=:= »E . _‘e“_‘dl]’* (96)
' AVA TS b

This is because the dipole moment P is
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TABLE I

Comparison of Av vs At For Method 1 ::_.',::
Stability and Convergence Requirements e
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21k
s [2REs ] (Ref 13 pg 1086), (97)
and E is
1%
801 % .
E = X_—E—] (98)

Here, I is the intensity of the laser in watts/m* . Using
Prodan and Phillips numbers then, J\ = S$Sxi0® sec' . This
gives a maximum allowable scan rate of 3a1510'* se¢™ from
equation 58. Prodan and Phillips reported a rate of 4,02E12
sec " and 6.28E12 sec”~. Both of these are slower than the

calculated maximum value. Other needed numbers are

k:-;xn—g \x\va" (99)
wz oW < 3\\655«7‘ (100)

Table 1 gives acceptable values of the time increment for
various values of the velocity increment. If the force and
diffusion coefficients are not to change by 1/10 over the step
size, then the velocity step must be less than 5 m/sec. A
step size of 1.5 m/sec for velocity and S5E-7 sec for time will
be used.

The program used to solve the Fokker-Planck equation
is given in Appendix I. A brief description of the program

will be given here. Figure 1 is a flow chart for the program,
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= A N R N N T T ™ Y T U V=g

Input

ata VecTB?E‘ZJ

Print Initial Data Vectors -

j
Time Loop: J counter
Change Porce, Diffusion Coefficients, ‘
Calculate New Distribution. 4

- S

Calculate Area Under Distribution
TOTNUM -

= MT?
Y
END- )
Figure 1. Flowohart for FPLK Program ;Z
&
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The program is written in Fortran 77 and was run on the AFIT

Yax computer.

The program has three start modes. One exits the program

£ "r
a
{ S
e

e

immediately. The second starts the program for the first time,

Y SUAT
s

and the third restarts the program if it was broken off in

-
Y

the middle of a run. The program is sometimes terminated

’y
s

before completion because the running time becomes excessive
for various combinations of ot , e&av , and the rate of de-

tuning. When the program is restarted, the data vectors are

>
X
A
--:.
.
- -..

read back into working memory. These vectors are saved as a
routine process within the program. The program then skips
directly to the section that solves the Fokker-Planck equation
using the data vectors and method 1,

The initial start mode reads in 21 values which charac-

terize the problem. The data vectors are then created. The

first data vector is the velocity. It is calculated using a
simple summing process and is called VELCTR. The initial o=
velocity distribution function is calculated using equation

101 (Ref 12 pg 20). It is named DFTN,

§- -:‘—’—.-: <xp {'%3 (101)

)
where o = \:23'_‘_]1 and v = Velocity (m/sec)
™

,l ,l "l f. " -:" "' ,' "l“.‘l :' .’ R " . v ) . . . N . N . . -.’ .
LI . DR SR LN ., |
I

k = Boltzmans constant, R

T = Temperature °*\W :ﬁﬁ
AN

m = Mass of atom. £
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The force is computed using equation 49 and is called FORCE.

FUR

The diffusion coefficient is calculated using equation 50 b \‘
and is called DIFUSN, o
The section that solves the Fokker-Planck equation using %Si
difference equation method 1 is the major part of the program. ;:m
The values for the distribution function are calculated for .Ef’

the next time increment using values at the current time. B

AR . "
ALy

Thus, the driving mechanism for the program is an iteration

loop in time with counter ¥ . Instead of recomputing the force
and diffusion coefficients at each time increment, a interpol-
ation routine is used to shift the values down the velocity
axis an amount equal to the amount they move in the time PR
increment. This can be done because the force and diffusion
coefficients are represented by a curve dependent on the
velocity that is translated to lower velocities as time proceeds.
An examination of equations 49 and 50 will convince the reader AR
of this. o
The change in the distribution function called DELDFN,
is calculated for the ith velocity and the j + 1lth time using ' 5§i
the method 1 difference equation. This change is added to the E?i
old value of DFTN and a new (i.e. j + 1th) distribution funtion
is calculated all along the velocity axis. The area under the
distribution function represents the intergral of the curve
over all velocity space. Thus, it represents the number of
atoms under consideration. This number should remain constant

since the number of particles in the beam is a constant. The if:?
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value for the area is called TOTNUM and is calculated using

DAL AMPEAL |

"‘

T a rectangle integration formula.

The results of the calculations are printed into two
different files. A table of output values called WRTDAT1, is
used as the input to the graphics package. The table has féur
columns with no headers or other identifying information. The

four columns are the VELCTR, DFTN, FORCE and J values respect-

IOOONR SRRV 4

ively. The second output file is called outputx where x is a
number that keeps track of the output file number. This file
contains the time increment and the value of TOTNUM, as well

as the values of velocity, DFTN and FORCE. The outputx and
WRTDAT1 files contain values for five different time increments.

It should be noted that the do loop that runs the outputx

@i and WRTDAT1 files, prints every Mth velocity value. This can
significantly cut down on the file space required. It does
tend to cause losses in the accuracy of the results since the
maximum value for the distribution function may be in between
the Ith and I + Mth values., If M = 1, the stability and con-
vergence criteria suggest that the maximum value will be printed

for all the values at all the velocities.

The values for TIME and TOTNUM are printed every 100
time iterations. A counter called Q is incremented each time
step. When it reaches 100, the data vectors discussed above
are stored and the valies for TIME and TOTNUM are printed. The
value of TOTNUM gives a running check of the stability of the

difference equation, If TOTNUM changes significantly, it is a

Y. 7 (AN She e SNt L A U I Fa
L} ORI FRAEAREA
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: A
o sure sign that the difference equation is unstable. NV
‘. w To insure that the convergence and stability require- o
' ments are met, the program will be rerun with half the step ;{-_-:_,
.» sizes for the velocity and time increments, If the values . J}.:
i of FORCE, DFTN, or velocity where the peak of the distribution ‘g‘
L~_' :'t‘unction sits, change much with respect to their initial *
amounts, then the step size will be rehalved untill it changes L

. no more than 20%. The following is a description of the results K
for the difference equation for various initial conditions.

: If the laser is not swept in frequency, then the force \
: interacts with only one velocity of atoms. Figure 2 shows the ;:
initial velocity distribution function for the atoms before

the laser is turned on. Figure 3 shows the distribution function :

Q after the laser has been turned on for one millisecond. As R

| shown in figure 3, the force causes a narrow spike to appear t

in the distribution function. The peak is very narrow compared

to the initial distribution function. The computer took ap- o

proximately 950 CPU seconds for this calculation. *~

If the peak is Gaussian, then the FWHM is related to

the o spread of the peak by 102, =
(F_\'/n.ﬂ_‘i\_\lt S?* 2IQn 2 (102)

The o 1s the root-mean-square deviation of v from the mean -+

of the Gaussian distribution (Ref 18 pg 24). It therefore \\

‘ provides a direct measure of the width of the distribution ™
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RIS T R,

function about the mean ~r (Ref 18 pg 34). The & is important
because it can be related to a characteristic temperature
for Gaussian velocity distribution functions.

Following Reif, the & is related to this temperature

by

"i‘ = Mc‘ = ™ (F:‘fn\t

o8 , (103)
N AN W

where k is Boltzmans constant and m is the mass of the parti-
cles (Ref 18 pg 266). So the narrower the peak in the distri-
bution, the "colder" the temperature of the atoms. Using equation
103, one can compare the initial and final temperature of

the atomic beam by knowing the FWHM of the distribution function
before and after the laser interacts with the beam. The initial
FWHM of the velocity distribution in figure 2 yields a tem-
perature 543.6 °K. The final FWHM of the velocity distribution
from figure 3 yields a temperature of - .2%K. As can be seen,
the beam is "cooled" by the laser interacting with it. The
laser soon moves all the atoms in resonance with it to slower
velocities. If the frequency of the laser does not change,
the atoms will assume a steady state solution much like that
shown in figure 3.

The atoms speed is not slowed appreciably for this case. Qié
This is because the force function is very narrow. wWwhen the S

atoms slow by a small amount, they go out of resonance with

the laser. To get a feel for how small a change in velocity
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N this is, look at the FWHM of the force. The FWHM of the force gﬁ
. ) -

- is (Ref 11 pg 226). Ei

) o
) ;-:::

FWHM = (H"# W - 1.41«x Ty sec” . (104) DA

X T

[ X

2 This FWHM has units of radians/sec. In velocity this converts Es
to i;

2 AV = iﬁ? = 14,1 m/sec. (105) %i
i Thus, the atoms only have to slow ~15 m/sec and they are out ;ﬁ

3 of resonance with the force., This is why the laser frequency %Z
must be swept. o

s . To see the effect of the laser frequency sweeping, a :i:

case similar to that of Prodan and Phillips will be run. The

laser is swept for 480 MHz at a rate of .64 GHz/millisec. This
corresponds to a rate of 4,.02E12 sec’* in radian measure, | o
with a total time of 7.5 x10"Y sec. Figure 4 and 5 give the :
initial and final positions of the distribution function.

As can be seen, the laser sweeps the atoms to a slower overall

velocity as well as narrowing the peak. The peak of the dis- -
tribution function is at a velocity of 740 m/sec. The time ﬁ;
ii and velocity steps have been cut. The step size was halved ii
since the value for the peak of the distribution function %;
;; changed by 27% after being halved once. This was felt to be E§
. large, so the step size was repeatedly halved. This time the ;S

ox
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resulting change in the peak of the distribution function was
23%, The FWHM of the narrow peak is 7.03 m/sec. This corres-
ponds to a temperature of 2.48 10" °K,
' Another case experimentally run by Prodan and Phillips
was with the laser sweeping 750 MHz at a rate of 1 GHz/millisec.
This corresponds to a rate of 6.28E12 radians/sec® and a time
of 7.5uui* sec. Figures 6 and 7 show the results of the dif-
ference equation for this case. Again the overall results are
the same. The atoms are slowed down and the distribution
function becomes very peaked. The FWHM is 6.5 m/sec, which
corresponds to a temperature of 2.122xWw* °K. The final
peak of the distribution function is at velocity 586.75 m/sec.
If the atoms were following the force exactly, theory would
expect the final velocity to be 660 m/sec.

An interesting calculation is to see if there exists a
lower limit on the translational velocity of the atoms and
if there exists a lower temperature bound on that peak. A
rate of 4.02wio'* sec’* was used for a time of 2.475x10°% sec.
Figures 8 thru 13 show the atoms slowing down as the laser
frequency sweeps down. The calculations show that the trans-
lational motion of the atoms can be stopped completely. Indeed,
they can be turned around and be made to go the other direction.
However, a lower limit is found to the temperature. The smallest
FWHM measured from the calculations was 6.25 m/sec., This

corresponds to a temperature of 1.96x\¢" °K.
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3 F
¥ Discussion -
A Prodan and Phillips of the National Bureau of Standards N

have reported experimental results for a similar case to that
just analyzed. In that experiment, the laser was focused an

amount equal to the divergence of the atomic beam (Ref 23).

Ky

Y -'.‘-":‘:J;.:'..'a,':.’. r..l._.
[ 2 A 5,1’44 .

Thus, the electric field is always perpendicular to the atoms |
Li velocity. This was done so as to make the laser look more like ;f;

a plane wave., Table II sumarizes their results and compares

them to the results from the analysis performed before. §¢f
Included in Table II are theoretical calculations for the o
velocity at which the peak of the velocity distribution function o

will end. These values are obtained from 106,

av: Lw (106)
h
As can be seen from Table II, the values for the end
velocity of the peak agree with the experimental values
within 10%. The values for FWHM do not show such agreement,
As will be shown later, the guassian nature of the laser

leads to a different force term from that used in the

[ Ra TR ".':-‘ SR

analysis. This different force is analyzed to order of
magnitude to see if it should cause changes in the final
value of the FWHM. The conclusion at this point is that
the guassian nature of the laser does not make significant
changes unless focussed to a very small spot size. Prodan
and Phillips do not give experimental error bars for the

values of the FWHM (Ref 10 pg 140). Thus it is possible

72 \'~
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that the factor of six difference between experimental

3
'

v,
[N

._e

= and numerical values for the FWHM is not exceedingly Et

large. Furthur data is required for a more definite Eg

resolution to this descrepancy. Eé

The important consideration is that the numerical ':;

E:' calculations predict the overall characteristics of the Eﬁ

?; experiment quite well. Only one major effect seen exper- Eﬁ

.i imentally is not shown by the numerical calculations. This g;

;: effect is best seen by looking at figure 14. This is a EE

;. reproduction of Prodan and Phillips data (Ref 10 pg 139). E;

1 As can be seen, the values for the peak of the velocity ;

& distribution function decrease for a further slowing of the B
- beam. A review of figures 8 ﬁhru 13 shows this effect is

(é_ not seen by the numerical calculations. This is an impor- E

tant consideration since this effect is responsible for o
current lower limits obtainable experimentally for trans-

lational velocity reduction. At this time the descrepancy

"r "" h ' l' -l.A."‘A .. T . '._."

between experiment and numerical calculation is unresolved.

- The numerical calculation predicts that the beam can be

, - , e
B il WP P U

slowed arbitrarily close to 0 m/sec in translational speed.

As seen in Table II, the values for the FWEM for

the two different experimental cases remain nearly constant. )

‘ This is explained by the fact that Prodan and Phillips ran %
; the 750 Miz sweep at a slightly faster rate than the 480 MHz E
5 sweep. This resulted in the interaction time for the laser E

and atoms being equal for the two cases. For both runs, ;
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the laser interacted with the atoms for 7.5x10" % sec.

This suggests the FdHM is a function of total interaction
time. To check this hypothesis, another computer calculation
was performed for the 480 Miz sweep. In this case the rate
was increased to 6.28xI0'" sec” . As can be seen in figures
15 and 16, the final velocity of the peak is at the same
value as before. The FWHM of the peak has changed to

6.644 m/sec for this case. This is a reduction in the FWHM
of 12.1% from the previous case.

The physical cause of this effect is not yet under-
stood by the author. It does lead to the intresting
prediction that for a given frequency sweep, a faster
sweep rate will yield narrower FWHM at the end of the
interaction,

Cook gives the lowest achievable temperature for the
case of a standing wave laser cooling an atomic beam using
the dipole force to slow the atoms (Ref 24 pg 979). To
within an order of magnitude estimate, similar arguments
yield a lowest achievable temperature for the traveling
wave case of

! -
Amet= KA (107)

Here the & is related to the temperature by equation 102,

This yields a smallest expected FWIM of
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(FWHMY ™ 42,2 Ak (108)
P ™

The above formula yields a value of the minimum allowable
FWHM of about 1.7 m/sec. Table II shows the numerical values ‘T:
of FWHM are in agreement with this calculation in that they
do not violate it.

As mentioned before the force induced by a guassian
laser is different from that calculated for an external
field in the form of a plane wave. To see this difference
the following is presented.

4 Consider the form of the force in equation 15
: evaluated for an external field of a guassian laser. The

field of the laser is presented in equation 109.

B = Eowp 3 LY s (k- wot) (109) o

Here W, is the beam waist and

J\ is the field strength, /\:Neevp 2‘;’;}}"& VLo p&e . . g’,
o When this inserted into the force equation, one obtains :ﬂ&
- .""}~
a translational force the same as before. A transverse : R
. force is also present. For on resonance ( D =0), the .
; transverse force has the form of equation 110. ff'
b‘ L. 1
Fﬁﬂnwm - kit VU (110) \q
t q( \L-'IY'-& H’. FIJL\J ‘.:.‘::




If the laser is counter propagated to the atomic beam it
will defocuss and move the atoms away from the on axis
position (Ref 11 pg 20). This is because for a counter
propagated laser #¢o , Thus, since the gradient points
inward, the direction of the force is outward. If this
force is of the same magnitude as the translational force
then the on axis velocity distribution function will have
a smaller value. This could change the value for the FWHM,
This is a critical question since the numerical values of
the FWHM are smaller than the experimental values. To
resolve if the guassian nature of the beam should be
neglected a comparison of the relative magnitudes of the
translational and transverse forces is performed. For..
this eomparison the maximum value of the transverse force
is needed. This is computed much as before. The only
difference is that a gradient must be taken of the new
Rabi frequency. After this is accomplished one obtains,
-Yr N (k"t\ ey p 2"3\3‘% s

UKD v RO W

The maximum is now calculated noticing that Kid> Ree N ,

F‘h‘«\s\n.rs =

and that a maximum will occur when ¢z2W, . This leads

t0 a maximum transverse force of,

F‘trwu, P M

ki w.
Comparison of numerical values with the maximum translational

force shows th4t W37 \O%  for the two forces to be equal,
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Thus the laser would have to be very focussed for the two
forces to be of the same magnitude. This shows that for
lasers with a waist of 1 cm the transverse force is negligible.
Thus the use of a plane wave for the external field should
not affect the FWHM value.

The amount of spread in the peak of the velocity
distribution function is a measure of its temperature. If
the velocity and the spread in the velocity is small enough,
the atoms can be inserted into a trap for neutral atoms.
This trap is described by Ashkin (Ref 25). Cook and Hill
have a new type of neutral atom trap using the "radiation
force exerted by the thin evanescent wave that is generated
on the surface of a dielectric medium when laser light is
totally reflected internally at that surface"(Ref 26 pg 258).
The requirement on the translationzl speed for both these
traps are +5 m/sec. Using a one dimensional analysis there
seems to be no reason why these requirements cannot be met.

A discussion of the amount of confidence warrented
in the numerical calculations is now in order. The stability
and convergence analysis govern the step size for time and
velocity. To meet the smooth field approximation, and
hence the condition for local stability, the step size of

velocity was limited to less than 4 m/sec. After the

s s

calculations are performed, the step sizes are halved to see

NI

wees

if there are any changes in the answers. When this is

]
AR

4

acconmplished, it is found that changes made independently
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for the time increment, do not effect the results as long
as the time increment is less than its maximum allowed by
equation 96. Changes in the velocity step size are found
to effect the answers, This indicates that the stability
of the numerical calculations are assured but that some
question convergence of the answers to real solutions

due to truncation errors still exist.

To investigate the convergence question, the 480 Mz
sweep was rerun several times with halved velocity step sizes.
In each case the time step size was halved along with the
velocity step size. The time step size was checked to
insure that it was in accordance with equation 88. The
time step size was independently varied to insure that the
only changes seen were due to the change in the velocity
step size. Table III summarizes the results of this invest-
igation. Included are times that the computer took to run
the case. As can be seen, the run times quickly become very
long. Most values are not affected by changes in the velocity
step size. The value most sensitive to the step size is the
peak value of the velocity distribution function. Table III
shows the percentage change from one step size to the next
for this value. The smallest change seen was 23%. All other
values show percentage changes that are smaller. These small
changes, along with long run times at small step sizes,

convinced the author that acceptable limits of numerical

r N

-9
accuracy have been reached at av:-FSmfu. and oteiasnoec,

.
e
R O

e
B )

v,
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TABLE III

Effect of Halving Velocity Increment on Numerical Results

|

(é>%£d

Teak value of
Velocity Dist.

Final Position
For Peak Dist.

% change 1in
Peak Value@ #pvr

Run Time
(CPU hrs.)

1.5

1,177

734 m/sec

27%

.32

.75

1.61“’

736 m/sec

23%

.72

375

2,111

738 m/sec

23%

2.5

1875

2,755

739 m/sec

8.7
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The changes in the answers are attributed to trun-
~ cation errors. The FWHM of the force function is 14 m/sec.
With a step size of 1.5 m/sec there are only about nine velocity
steps within this FWiM. This causes truncation errors due
to the course nature of the force function. The stability
of the calculations insures that these errors do not
- propagate and cause the results to wildly diverge.
i However, the errors are slow to converge, and so affect

the final results. As the velocity step size is reduced,

the calculated answers converge to the real solutions. A
similar argument holds for the peak of the velocity dist-
ribution function. The peak becomes very narrow as the atoms
slow down. Thus, small velocity step sizes must be used so
enough sample points are obtained far the peak. Too large
a velocity step size will cause the peak to not have enough
sample points., Thus errors will be created in the calculations
unless the velocity step size is small enough. Small enough
will be defined as there being 20 points under the narrowest
function.

The final choice for the velocity step size is .375 m/sec.
The time step size is 1,25w% ' sec. This time step size
is in agreement with equation 88. This velocity step size
is used since it provides =20 points under the narrowest
function, The narrowest function, and the function most
sensitive to changes in the velocity step size, is the peak

of the velocity distribution function. It changes by 235
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o when the velocity step size is changed by halving it.
o

If this change is neglected then all numerical results

)

=

agree with the experimenﬁal results within 10%. Neglecting

[ the change in the peak of the velocity distribution function

[}
ST Pty

- is allowable since it is only important if the peak decreses
; as the atoms are slowed. Since changes in the velocity step
3 size always increase the peak value of the velocity distribution
function, neglecting it for purposes of determining accuracy

is acceptable.

The important parts of this discussion are now

. .

summarized. The numerical results agree with the experimental
results to within 10% for all values except for the FWHM

and the peak of the distribution function. These two values
are very sensitive to changes in velocity step size because

. of truncation error. For a step size indicated before the
FWdiM are believed to be correct to 15%. The minimum FWHM

observed numerically agree with a calculation for the minmum

allowable FWHM. The guassian nature of the laser is shown
not to effect the FiliiM as long as the laser is not focussed Lo
to micron size. The numerical calculations give rise to

the prediction that for a given amoun% of frequency change,

i a faster sweep rate produces a narrower FWHM.
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IV Conclusions and Recommendations

Review of Major Results

Ehrenfests theorem, along with an assumed form of the
external electromagnetic field, yields the set of coupled
differential equations 7 thru 10, These equations give the
interaction force between the laser and the atoms. The in-
ternal dynamics of the atom is described by the optical-
Bloch equations 8 thru 10. This set of equations are consis-
tent with a more general set of equations that are developed
by Cook (Ref 13 pg 1087).

In the smooth field approximation, the set of equations
condenses to a single partial differential equation known as
the Fokker-Planck equation. This equation is the basis for
the analysis performed in this thesis. Along with the Fokker-
Planck equation, coefficients are developed for the force
and diffusion terms. These are presented in equations 15 and
29 respectively.

The Fokker-Planck equation is rewritten as a difference
equation to allow numerical solutions to be obtained. Several
difference equations are analyzed using convergence and
stability criteria.-Equation 60 is selected as the difference
equation of choice because it has the least stringent require-
ments on the step size for time and velocity.

This difference equation is used to analyze the
Fokker-Planck equation for a one dimensional geometry. A

plane wave laser is incident upon a one dimensional beam.,
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The laser frequency is swept at a rate given by equation 58.
This sweeping brings different velocity atoms into resonance
with the laser. The laser imparts quanta of momentum to the
atoms and thus slows them down., The atomic velocity distri-
bution function reflects this slowing of atoms by changing
from a thermal distribution to a sharply peaked distribution.
In general terms, the peak of this distribution follows the
laser frequency and slows to low translational velocities,
with corresponding narrow spreads in the peak.

This analysis predicts that the translational velocities
can be brought arbitrarily close to 0 m/sec. The minimum FWHM -
of the peak in the distribution function is 6.25 m/sec. This
corresponds to a temperature of 1,96 »o* °K, assuming the
peak of the distribution function relaxes to a Gaussian distri-
bution. This temperature is a measure of the spread in energy
of the atoms within this slow peak. It is also a direct measure
of the width of the peak. The minimum FWHM agrees with a limit
developed by Cook for the smallest allowable FWHM.

The numerical calculations suffer from truncation-error
unless the velocity step size is small enough. Small enough
is defined as there being 20 velocity points on the narrowest
peak in the calculations. The narrowest peak is the distri-
bution function after being cooled by the laser. The value
of the maximum of this peak is the value most sensitive to
changes in the velocity step size. A velocity step size of

.1875 m/sec gives good results but the run time on the computer
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is 8.7 CPU hours. This run time is clearly excessive. Thus,
a velocity step size of .375 m/sec, and a time step size of
1,256 sec are used. This results in run times of 2.5
CPU hours. The numerical results are believed to be correct

to within 10% for these step sizes.

Conclusions

The Fokker-Planck equation is a powerful tool to
study the effects of resonant radiation upon atoms. All
effects experimentally observed except one are predicted
using a simple one dimensional analysis of the problem. The
one dimensional m>del predicts that the atoms can be brought
arbitrarily close to 0 m/sec in translational speed.
Although truncation errors farce a small velocity step size,
and hence long run times, the overall method is still useful.
T"he Fokker-Planck analysis predicts that for fixed frequency
sweeps, a faster sweep rate will yield narrower FiU'M at the
end of the interaction,

The Fokker-Planck equation can be used for analysis
of other types of resonant radiation interaction between
atoms and photons. The standing wave laser used as an atomic
trap is a g~od example. As long as the atoms enter the trap
at slow velocities, the Fokker-Planck equation adequately
describes their motion.

In cases where the smooth field approximation is

violated, the Fokker-Planck equation should be replaced by

the quasiclassical equations developed by Cook (Ref 13 pg 1087).
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An example of thié case is found in the optical Stern-Gerlagh
effect. Due to the quantized nature of the electric dipole
moment, the atomic distribution function will be split in

half by oppositely directed forces. The Fokker-Planck equation
does not yield this result because inherent in its derivation
is the assumption that the wave packet under consideration

is small compared to changes in the external field.

Recommendations

Further work in the area of numerical analysis of
resonate radiation can be accomplished in at least three
different areas. No doubt other interesting applications are
present, but these three seem the most obvious or potentially
usefull to the author, _

The Fokker-Planck equation should be used to analyze
the standing wave laser used as a neutral atom trap. Such
a trap was proposed by Ashkin in 1978 (Ref 26). This type
of trap will allow doppler free spectroscopy to be performed
upon the atoms inside. The nature of the Fokker-Planck equation

reverts to its general form, as in equation 112,

B _ .2 %é - 2(F8) 4 . (05) (112)

The force will be given by equation 113 (Ref 13 pg 1089)

A N
~H 0 3% (113)

Ya* +AT st

Fls=
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The diffusion coefficient is ii;
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= At Lqars5A* 44t ] (114) 3:::-;:5
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The Fokker-Planck equation should be analyzed in two Eﬁj

dimensions for the case under consideration in this thesis. =i

The form of the external field is changed to a Gaussian beam, Eﬂa

as in equation 109, The force is then given by equations 49 hj?

and 110. This analysis may allow determination of the cause Iﬁil

of the observed decrease in the peak of the distribution func- rfﬂ

tion as the beam is slowed.
The third area also analyzes a Guassian laser ﬁﬁq

interacting with an atomic beam. In this case the laser is s

(o s

i used to sense the position of a neutral beam. The laser ibﬂ

N e
- is directed towards the neutral beam from the side. The %%ﬁ
.- Rty
atoms will be resonant with the laser for only a small angle %

of deflection from the normal. The effect of the laser
on the emittance, and hence divergence, of the neutral S
beam would be of intrest to accelerator designers. Cooks E;

quasiclassical equation would have to be solved since the f?

interaction time is very short. O
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Appendixs The FPLK Program

The FPLK program is used to solve the difference
equation form of the Fokker-Planck equation. The program
is developed to allow maximum flexibility in terms on
analyzing different problems. This is accomplished using
a large initial data input section. The program is based
on a one dimensional analysis described in detail in
Section III. The program is written in ANSI standard
Fortran 77.

The input data section requires that the operator
of the program input 21 values that describe the problem
to be analyzed. All inputed values are in the IMKS system
of units. Figure 17 shows a typical set of input values
which were used to analyze the 480 IMHz sweep discussed in
the Analysis section. Included in figure 17 are lettered
captions on the input values, and a key that gives a description
of the value and its units.

Once the input data section is mastered, almost any
problem can be analyzed using the program. Stability

and convergence criteria 1limit the step sizes for & and av .

The rate of detuning must conform to equation 58.

The CPU time required to run the program becomes
excessive as & and sv become small. This is illustrated
in table III, which gives run times for various cases.
To improve execution speed, several modifications were made

to the program. The listing given in the end of this
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e appendix is the modified form of the program. The changes

amount to removing all constants which are inside the time
loop in the program and calculating them outside the time
loop. This saves amny calculations and speeds the program
up by 20%. The program listed has been run for several
different cases discussed in the thesis and yields the
same answers.,

Figure 18 is an example of the output format of the
program. The velocity is printed along with the value of
the distribution function and the force at that velocity.

This is accomplished for all velocities for one time step.

The computer then prints the number TOTNUM (the area under
the distribution function), and then starts the calculations
for the next time increment. Only six values of time are
printed in the output file since it becomes quite large.
The file wrtdatl is used to take values from the program
for these six times and input them into a graphics package.
This package produces figures similar to those used in this
thesis. The values in wrtdatl are not labled as the values
of outputx are. The first column in wrtdatl is the velocity.
The second column is the value of the distribution function
at that velocity. The third is the force at that velocity
and the fourth is the value of the time increment.

The size of the files wrtdatl and outputx can become
quite large for values of small velocity step size. For

a velocity step size of .325 m/sec, the outputx file is
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two megabytes. The wrtdatl file is 30% smaller for this

case. This assumes that all the values calculated are written
into the file. The use of the variable DFS in the input

data allows only every Ith value of the velocity to be

printed into the outputx and wrtdatl files. Here I is the
value assigned to the variable DFS. This can substantially
reduce the size of the file. XHowever, this will rule

out being able to find the FWHM of the peak of the distribution
function as it slows down. This is because the FWHM becomes
very small and printing every Ith value of velocity will

skip over the entire peak. If the FJ:ll is not desired, then
the value for DFS can be set to allow a point every 20 m/sec
to be printed and decent graphs will be produced.

The graphics package used to create the figures is
called S (Ref 27). The values in wrtdatl are read into a
matrix in the S library. They are split into four vectors
called force,df (value of the distribution function), vec
(value of the velocity), and timex (value of the time increment
the calculation is performed for). The figures generated
for this thesis are plots of 4f versus vec. Thus, this is
a graph of the distribution function for time J as a function
of velocity. Figure 19 shows the program used to plot the
distribution function. The plotter used is a HP 72204

Plotter., It can be used interactively with the S package.

98

.....

ST
v e e ]
"'.. ,.. v.}n" RS

i

*
wa'y 4, f

e
foely Ay
.

(g

[
J’fl' )
o

v, ‘v ,":,"!' .
P
»



M D e DR . Y LENC it et o o o &gk 4 S Dk e e e
A . ! Lo : A ot S * . . ot e . Lt e N |4 S .
WIS o B N Y 2 R . Lo DR . ., L . LA
et » e P T . . . PRI RN . Set < AN
R A N A L T Y oLt . i . oL, . L R P R . A

woubouy sorydoug g1 eunbig

, (XBWTR4U4PIITTAST TP
' . Axméwvsg.«u.—.w\:vﬁ._”aml..wﬂuws.
g Cv4apm xamty
y CE*Ipu~ad40y
. CT1pw urgp
; . CT41pw 410194
", (ANYL=MOIAGg* p=T00U4 (,CCIOPIAM, Ypovad vxﬁ.—#ﬂ.:_..ﬁ.—.

Rl Nl G AEN

AT A .
-
-,
L




s

A

Ly

_f »
£

The program in figure 19 can be executed from the
shell of the Unix system. Unix is the operating system for

the Vax computer. 7The execution statement is,

S BATCH odata pltdat

Here odata is the name of the program in figure 19 and pltdat
is the name of a file that results and error messages will
appear in when the program is executed. Iliote that S is a
case sensitive language, and that the command S BATCH must
be in capital letters. The ease of creating graphics programs
in S, and the ability to execute them while in the Unix shell,
outweighs the slow input/output times associated with the
two software designs., The author found the combination of
S and Unix to be a powerful one,

The program that plots the graphics has to be executed
while in the S library. 7o enter S, type S while in
the Unix system. To exit S type q . This command
will automatically save all files created while in S and
return the user to the Unix shell. An on line documentation
for S is available by typing help while in the S library.
A complete description of the plotting routines is given in

the manual for the S package (Ref 27 pg 2-16).
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THIS PROGRAM CALCULATES THE EFFECT OF A LASER ON AN ATOMIC
BEAM. IT IS A DIFFRENCE EQUATION OF THE FOKKER PLANCK EQUATION
DEVELOFED FOR THIS CASE BY M G MCHARG

REAL FORCE(20000),0FTN(20000),ELIFN(200000),MASS

REAL TELTIM,DELV, TOTNUM,OMEGAC,VEL (20000) ,ALFPHA, TEMP,A

REAL VELO,VELMIN,FRENUM, TIME,WK,R,VELCTR(20000),FFRIME(20000)
REAL DIFUSN(20000),DEFCTV(20000),FFTN(20000),IFRIME(20000) -
INTEGER DFS,MTyN,Q,JCNTR

THIS SECTION OFENS THE FILES wrtdatl AND save. wrtdatl IS THE FILE FOF
LATA TO HE INFUTED INTO THE GRAPHICS. save IS A FILE THAT SAVES THE
VALUE FOR JCNTR AND THE VECTORS VELCTR DFTN FORCE AND DIFUSN.,
OFEN(10,FILE="wrtdatl’)

REWIND 10

OPEN(11,FILE='save’)

REWIND 11

FRINTX, "VARIARLE LIST®

PRINTX, "FORCE? 2400 ELEMENT VECTOR. FORCE DISTRIBUTION FTN®
FPRINTX, "OFTN: 2400 ELEMENT VECTOR. DISTRIRUTION FTN TO BE®
PRINTX,"® USET' IN BOLTZMAN EQTN."

PRINTX, *MASS: PARTICLE MASS,KILOGRAMS®

PRINTX, *DEL TIM? INCREMENT OF TIME IN DIFFERENCING EQTN.®

PRINTX, *DELV?! CHANGE IN VELOCITY IN DIFFERENCING EQTN.*

FPRINTX, *"TOTNUM?! THE AREA UNDER THE DFTN CURVE.®"

FRINTX,*VELCTR! VELOCITY °

PRINTX, "ALFPHA! WIDTH OF DFTN IN METERS PER SECOND*

FPRINTX, *TEMP!TEMPERATURE IN DEGREES KELVIN OF OVEN PRODUCING THE®
FRINTX, " ATOMS" .
PRINTX,*A: SPONTANEOUS EMMISSION COEFFICIENT, INVERSE SECONDS® AR
FPRINTX,*OMEGAC: CAPITAL OMEGA, RABI FREQUENCY,INVERSE SECONDS® A
PRINTX, "VELMIN? MINIMUM VELOCITY IN DFTN.® At
PRINTX, *VELO: THE INITIAL VELOCITY WHICH FORCE AFFECTS * F
PRINTX,*TIME: A CONSTANT USED TO TELL INTERACTION TIME® ey
PRINTX,*DFS! SFACING INTEGER FOR OUTFUT PRINTING *

PRINTX, *FRENUM: THE PRELIMINARY TOTNUM®

PRINTX, *MT: TOTAL NUMKER OF TIME ITERATIONS THE FROGRAM RUNS®
PRINTX, "R!RATE LASER FREQ IS SWEFT, IN INVERSE SECONDS®

¥
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FPRINTX,® SQUARED®
FRINTX,*"DETUNF?! THE DUTUNING FREQUENCY EHETWEEN LASER AND®
PRINTX," THE AKRSORBING LINE OF THE MEDIA® e
PRINTX, *WK: WAVENUMBER. 2XPI/LAMEDA IN INVERSE METERS® o
PRINTX, ‘LAMEDA! THE WAVELENGTH OF THE LASER IN METERS® Qt
PRINTX, *DELFTN? THE CHANGE IN THE DFTN® X
PRINTX,*N: THE END NUMEER IN DO LOOPS‘"® e
FRINTX, *NKBOLT! BOLTSMAN CONSTANT IN JOULES FER DEGREE KELVIN® fq
FRINTX, *DIFUSN:20000 ELEMENT VECTOR,DIFUSION COEFFICIENT °* f}
PRINTX, *DEFCTV?!20000 ELEMENT VECTOR,LELEFECTIVE * Hﬁ
Y
AN

e At K

b
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o000

40

PRINTX, "W THE FREQUENCY OF LASER IN INVERSE SECONDS(RADIAN)®
PRINTX, "SFOLIT?! THE SPEED OF LIGHT IN MKS®

FRINTX,"DELTIM? TIME STEF SIZE IN SECONIDS®

PRINTX, "DELV! VELOCITY STEFP SIZE IN METERS FER SECOND®

PRINTX, "QUIT: A COUNTER SET EQUAL TO 0,1,2 FOR START,ENL,RESTART®
FRINTX, " RESPECTIVELY"

FRINTX, " JCNTR? VALUE FOR THE TIME DO LOOF. SET IT EQUAL TO 1 IF"®
PRINTX, " FIRST START,SET EQUAL TO LAST VALUE OF J IF PESTART®
FRINTX, *H,G,[,E,F? VALUES OF TIME COUNTER AT WHICH THE FROGRAM®
FRINTX, * FRINTS THE OUTFUT VALUES®

FRINTX, "HEAR: FLANCKS CONTANT DIVIDED RY 2%PI, JOULES-SECONDS®
PRINTX,*C: MOMENTUM OF FHOTONS IN KILOGRAM-METERS FER SECOND®
PRINTX, "Q:COUNTER OF THE TIME INCREMENTS. WHEN IT REACHES 1900°*
PRINTX,* VALUE FOR JCNTR AND' THE VECTORS VELCTR,DFTN,FORCE*
FRINTX," AND DIFUSN ARE SAVED IN THE SAVE FILE®

PRINTX,"* *

THIS SECTION REANS IN INITIAL VALUES
FRINTX, * INFUT MASS,DELTIM,UELV,VELMIN,OMEGAC, TEMF WK,y MT,R,yN®
REALX, MASS,DELTIM,DELV,VELMIN,OMEGAC, TEMF,WK,MT,R,N
FRINTX,"MASS=",MASS, "IELTIM=",DELTIM, *DELV=",LELVYV
PRINTX, "VELMIN=",VELMIN, "OMEGAC=",0MEGAC, *TEMF=", TEMP
PRINTX, "WK=",WK, "MT=*,MT, "R=",R, "N=",N

PRINTX, *INFUT QUIT AND JCNTR®

READX, QUIT,JCNTR

PRINTX, *QUIT=",QUIT,*JCNTR=*, JCNTK

FRINTX, "INFUT VELO®,*INFUT DFS®,*INFUT A®

READX, VELO,IFS,A,W )

PRINTX, *VELO=",VELO, "DIFS=",0FS, "A=",A, "W=",U

READIX, E,G,I,E,F

F'RINT*, 'B=.yBy-G=.pGy'I‘:’"ny'E:.'Ey.F:.vF

QUIT IS THE START/QUIT/RESTART OFTION. IF QUIT=1 THEN FROGRAM ENIS
IF QUIT=2 THEN FROGRAM RESTARTS,IF RUIT=0 THEN FROGRAM STARTS FOR
FIRST TIME.

IF (QUIT ,EG. 1) THEN

GO 70 92
END IF

IF (QUIT .EQG. 2) THEN
READ(11,%)JCNTR
00 40 1=1,N
READ(11,X)VELCTR(I),DFTN(I),FORCE(I),DIFUSN(I)
CONTINUE
REWIND 11
GO0 70 82

END IF

THIS DO LOOF INITIALIZES THE VELOCITY DISTRIEBUTION FTN
BOLTK=1,38E~23
ALPHA=SORT (2 . XTEMPXBROLTK/MASS)

DG SO0 I=1,N

VEL(I)=DELYX(I-1)~-VELMIN

IF(VEL(I),LT.0) THEN
VEL(I)=0

END IF
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- c THE VELCTR SERVES TO PRINT THE REAL VELOCITY AXIS
- VELCTR(I)=DELVX(I-1)-VELMIN

< DEFCTV(I)=~(WKXVELO) +WKXVELCTR(I) o
T e DFTNCI)=((VEL (1) X%3)/ (ALPHAXX4) ) XEXP (- (VEL (1) X%X2)/ (ALPHAXX2)) pile
: “ir S0 CONTINUE e,
“ PRINTX,® * ~
- C=WKX1.0S546E-34 T4
, HEAR=1,054E-34 o
% SPOLIT=2.998E8 U
L c THE DO 70 LOOP CALCULATES THE TOTAL NUMEER TOTNUM Eﬁ
PRINTX,® ° . R

c THE FOLLOWING ARE CONSTANTS USED IN THE CALCULATIONS OF FORCE R

c AND DIFUSN., s
W=SPDLITXWK o
DIFCO1=HEARXWXOMEGAC/MASS aie
DIFCO=(DIFCO1/SPOLIT)X(DIFCO1/SPOLIT)X(A/S,) L.

DIFC1=AXA+2 . KOMEGACKOMEGAC e
DIFC2=-A%A+2, XOMEGACKOMEGAC e

DIFC3=2, XOMEGACXOMEGACKAXHENAR i
DIFCA=0MEGACKOMEGACKWNXWKXHEBAR/2, S

oY)

DELDC1=DELTIM/DELV/DELY
CINT1=(DELV-(DELTIMXR/UK))

DELDC2=(-DELTIM/ (MASSXDELV))

7 N CENREAS |

- c THE [0 86 LOOF MAKES THE DIFFUSION COEFFICIENT SO THE DELDFN '
"~ c CAN RE COMPUTED.
@i- 00 85 1=1,N
- DIFUSNCI)=(DIFCAXC(OIFCIX(12 . XNEFCTV(I+DIFC2)+AK(4, XDEFCTV(I )X
- C DEFCTV(I)+AXA) XHEARX (4 XDEFCTVC(I)XDEFCTVCI)+AXA) )/ (MASSX (4. X o
7 C DEFCTVC(ID)XDEFCTVUCII+NIFC1) )/ (MASSX (4, XDEFCTV(IYXNEFCTV(I) + Y
N C DIFC1))/(4.XDEFCTV(I)XNEFCTV(I)+DIFC1))+DIFCO/ (4 . XDEFCTV(I) X N
- C DEFCTV(I)+DIFC1) Sl
- 84 CONTINUE =
o c THE DO 85 LOOF MAKES THE FORCE COEFFICIENTS SO THE DO 90 LOOP o
- > CAN STEP OUT IN TIME, <
-2 Do 85 1=1,N . e
- FORCE(I)=-(AXOMEGACXCXOMEGAC) /(4 . XDEFCTV(I)XDEFCTV(I) +AXA+ 5
<. C 2%XOMEGACXOMEGAC) oy
~ 85 CONTINUE E;
: c THE DO 87 LOOF PRINTS THE INITIAL YALUES OF EVERYTHING -~

PRINTX, "TIME=0"*
DO 87 I=1 1N"[|Fs
PFTNCI)=DFTN(I) X100,
PRINTX, "VEL=" ,VELCTR(I), "IIFTN=",FFTN(I), "FORCE=",FORCE(I)
WRITE(10,990)VELCTR(I),PFTN(I),FORCE(I),J
il 990 FORMAT(SX,E12.5,2X,E12.5,2X,E12,5,2X,15)
8z CONTINUE
TOTNUM=0
Do 70 I=1,N
PRENUM=0
PRENUM=DELVXDFTN(I)
. TOTNUM=TOTNUM+PRENUM
= 70 CONTINUE
PRINTX, *TOTNUM=*, TOTNUM
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PRINTX,*

) FRINTX,® °*
: Q=0
&
> THIS IS THE TIME LOOP. IT CALCULATES VALUES FOR THE JTH
c ITERATION USING VALUES FROM THE J-1TH ITERATION
82 DO 90 J=JCNTR,MT :
TIME=JXDELTIM
c THE DO 91 LOOF INTERFOLATES TO MOVE THE FORCE AND DIFFUSAION
C COEFFICIENTS DOWN THE VELOCITY AXIS. THIS KEEFS THE PROGRAM e
c FROM RECALCULATING THE COEFFICIENTS EACH TIME. S
0o 91 I=1,N-1 g
DPRIME(I)==(CINT1X(DIFUSN(I+1)~-DIFUSN(I))/DELV)+DIFUSN(I+1) NN
r FFRIME(I)=-(CINT1X(FORCE(I+1)-FORCE(I))/DELV)+FORCE(I+1) R
91 CONT INUE NG
C THE DO 100 LOOP FINISHES MOVING THE FORCE AND DIFFUSION Eﬁﬁ
c COEFFICIENTS DOWN THE VELOCITY AXIS. AN
0o 100 I=1,N ST
DIFUSN(I)=DOFRIME(I) o
FORCE (I)=FFRIME(I) PN
100 CONTINUE E;q
c THE [0 80 LOOF CHANGES THE DISTRIBUTION FTN FOR VELOCITY ol
o 80 1=2,N-1 . X
DELDFN(I)=LELDC2X(FORCE(I+1)XDFTN(I+1) ;
4o C ~-FORCE(I)XDOFTNCI))+(DELDCIK(DIFUSNCI+1)XDFTN(I+1)-2.%
. C DIFUSN(I)XODFTNCI)+DIFUSNC(I-21)XDFTN(I-1)))
80 CONTINUE
c THE DO 81 LOOF CHANGES THE DISTRIBUTION FUNCTION FOR VELOCITY 1
0o 81 I=1,N : -
DFTN(I)=DFTNCI)+DELDFN(I)
81 CONTINUE
c THE DQ 75 LOOP FRINTS THE VELOCITY,DFTN,FORCE.,

IF(J.EQ.B.OR¢JIEQ.G.OR,J.EQ. L' OR+J EQ.E.OR.J.EQ.F) THEN
PRINTX, "TIME=",TIME
00 75 I=1,N,DFS
PFTN(I)=DF TN(I) %100
PRINTX, *VELOCITY=",VELCTR(I), *DFTN=",PFTN(I), *FORCE=*,FORCE(I)
WRITE(10,1000)VELCTR(I),PFTN(I),FORCE(I),J
1000  FORMAT(SX,E12.5,2XyE12.5,2X,E12,5,2X,15)
75  CONTINUE el
PRINTX, *TOTNUM=", TOTNUM s
END IF |

c THE DO 76 LOOF RECALCULATES TOTNUM :
TOTNUM=0 RS

DO 76 L=1,N Lo

PRENUM=0 g
PRENUM=DELVXDIFTN(L) E_

o TOTNUM=TOTNUM+FRENUM L
76 CONTINUE :




.....................................

JCNTR=J

C THE Q@ COUNTER PRINTS EVERY 100 TIME ANDI' TOTNUM
s @=Q+1
o IF(QR.EQ.100)THEN
Q=0
WRITE(11,X)JCNTR
N0 77 I=1,N
WRITE(11,X)VELCTR(I),OF TNCI),FORCE(I),DIFUSN(I)
77 CONTINUE )
REWIND 11
PRINTX, *TIME=",TIME
PRINTX,* *
. FRINTX,*"TOTNUM=", TOTNUM
PRINTX,®
PRINTX," * P
PRINT%,* *
END IF
90 CONTINUE
92 END
p 4
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